
INTRO

NEXT: What is legacy code?

1

Some people use the name “Legacy Code” to mean code that doesn’t have any tests
in it. And certainly it would be a lot easier to refactor and generally mess around with
your code if you had the safety net of a suite of tests, whether code based or a
human running the app, to confirm that you didn’t break it when you changed it.
That’s not what this talk is about, though: this talk is about taking a big unreadable
unmaintainable mess, which may have been created that way because the language
didn’t support what you really wanted to do, and turning it into something more
modern.

NEXT: First example, _output

2

From output.c in the Visual Studio 2013 CRT sources

Example from our C Standard Library
_output function has core implementation for printf, fprintf, sprintf, etc.
We ship the source with Visual Studio
Look at the evolution of just the function declaration
We start here…nice and simple
Someone decides we need to add Unicode (wchar_t)…

NEXT: Add Unicode functions

3

…so the function is changed
We compile the file twice now, once with UNICODE, once without
We update the definition to use _TCHAR where required
A bunch of #ifdef UNICODE blocks in the function too

Then someone says “we should support positional parameters…

NEXT: Positional parameters added

4

…So we do that too
Add _p versions of each of these functions, and throughout the file we add more
#ifdef blocks

Then, after a couple more iterations, the declaration (JUST the declaration) looks like
this…

NEXT: Entire declaration

5

Ugh.
You can’t even at a glance figure out which functions take which parameters.
This is only 2/3 of the declarations too (12 here; 6 more).

This is a 2700 line file
This one function spans 1500 lines
There are 223 conditionally compiled blocks

In short, this code gradually became impossible to maintain
Maintenance difficulty prevented us from adding features in VS2013
Unnoticed performance issues were lurking

NEXT: Another completely different example; popen, gotos

6

From popen.c in the Visual Studio 2013 CRT sources

popen starts up a child process with its I/O attached to a pipe in the calling process
Reading our implementation, we get to the end and discover this lovely code…
…and throughout the function there are a bunch of gotos

NEXT: An example from MSDN

7

From http://msdn.microsoft.com/en-
us/library/windows/desktop/bb776913(v=vs.85).aspx

This is sample code from MSDN
Fairly recent
Not as bad as the other two
But terrible C++ practice
“Arrow code”
Not using RAII, so we can’t make the code linear

My reaction when I find code like these examples is something like…

NEXT: The Scream

8

…this.

NEXT: Legacy C++ Code definition

9

For the purposes of this talk, define “legacy code” broadly

Perhaps it…
…overuses the preprocessor or
…doesn’t use RAII

Why change it?
“If it isn’t broken don’t fix it?”
…Update code during regular maintenance
…Update code if its design/impl is harming other development
…Audit critical components regularly
…From time to time consider a major overhaul

NEXT: Resources

10

11

C++11 and C++14 add a ton of great new features to C++
…lambdas, variadic templates, rvalue references

But almost everything we discuss here will work even with C++03
“Modernization” doesn’t mean turning your codebase into a terrifying template mess

This example from our implementation of std::tuple
(Libraries, especially C++ Standard Library, are where extensive C++11 use is often
beneficial and required.)

NEXT: SECTION 1: If you do nothing else…

This code is here as an example of what we are NOT suggesting you write. It’s from a
library, and it’s entirely appropriate for library code, but it’s not simple to read or
understand, and it has a lot in common with the wall of code examples from earlier in
the talk. We are not trying to lead you to this type of code, quite the opposite.

12

These are a few great resources for general refactoring techniques
This talk: only a few C++-specific techniques, mostly.
…Smorgasbord of suggestions to improve code

All available at the bookstore.

NEXT: BASICS TITLE

13

Switch to Kate

14

“it’s your foot” and “the compiler is your friend”

Warnings-as-errors – all the cool kids do it, but wait until you’re compiling clean on
/W4 before you turn it on

Leaving artifacts in your code (pragmas, casts, etc) to make warnings go away help
others to understand that whatever you’re doing here, you’re doing deliberately

15

the compiler doesn’t read indents – but we do

16

Visual C++ warns

17

GCC and Clang also warn.

18

19

Fortran joke, Yoda conditions

20

21

Advanced features eg templates 

The conversion process consists mainly of fixing errors you didn’t realize were there

22

If your code was bug free with no errors, turning up the warning level and compiling
as C++ would at least give you that knowledge about your code. The reality is for
most people that doing this will turn up a TON of places you have changes to make.
And while you’re making those changes, you might want to clean up some other
things, that compile fine but that are very hard to read and maintain. So let’s talk
about some of those now … hand to James.

23

Switch to James

24

25

26

This makes it more obvious what is the same and what is different

27

Nesting makes everything harder to follow. Comments can help but remember the
compiler doesn’t read comments. Ifdeffing the entire function lets you indent
normally to increase readability, for example.

28

29

30

31

We are going to talk about three uses for macros and what to do about them

32

If you want a value, use a const (it will have a type and everything!)
If you want several similar values, use enums
 - worried about name overlap? Enum classes
http://www.cprogramming.com/c++11/c++11-nullptr-strongly-typed-enum-
class.html

33

Need demo of this

34

This sort of thing is why many old school C++ developers have rigid strongly held
opinions about naming conventions. If “constants” defined as macros are always all
upper case, then you can’t accidently declare a local variable that has the same name
as a macro. As a safety net, this is not exactly bulletproof. And of course the error
message is utterly incomprehensible to someone who has no idea that these macros
are defined in some header file that was included as a result of some long chain of
includes, if the developer never uses them and didn’t know they existed.

35

36

Again compilers don’t read comments, so a comment telling people to make sure
they only pass values in a certain range is not something the compiler can enforce. At
best you’ll get an assert or some other runtime error, at worst you’ll get really strange
behavior that is difficult to debug. The compiler is your friend, you want to let the
compiler help you.

37

So switching to an enum solves a lot of this. You get to make it clear these 7 constants
belong together, for one thing. (And if these are the values you want, you don’t even
need to type out the values, though in this case since they already exist, what the
heck.) Also the compiler will notice if you flub up a copy and paste and give two
members of the enum the same value, which the preprocessor never would have.

38

39

As coded, red+anything = anything since red is 0. yellow+green=purple, and so on.
Composing flags by adding bitfields is a possibility but in general, we shouldn’t be
adding enums.

40

41

Enum classes solve this. They aren’t implicitly convertible to their underlying types,
and that’s a feature. You can static_cast<> them to the underlying type any time you
want.

42

43

44

45

You can even use an enum for a single constant if you want to get some of these
advantages

46

47

Add more parentheses, that’ll fix it!

48

With this macro to make a single character lowercase, you might think it makes sense
to write a function that can make a string lowercase by using the macro in a loop. But
macros aren’t functions and don’t evaluate their parameters. What the compiler
actually sees is this:

49

And that means the character pointer is getting incremented a whole lot more than
you bargained for.

50

There’s no arguing this is more readable. As well, it gets rid of the weirdness around
argument evaluation. Perhaps you think it’s going to be slower? This is going to be
inlined which means you are not taking a perf hit doing it this way.

51

If you were putting up with macros because you thought you didn’t have alternatives
– you have alternatives.

52

The last three, yeah, ok, you probably still need a macro. But anything else? Stop
using macros.

53

Switch to Kate
Horrible name, wonderful concept
Can’t sprinkle on RAII, have to bake it in. But what you want is natural scope so that
cleanup happens for you.

54

Actual example from msdn
“arrow code”

Explain SUCCEEDED(hr)
Horizontal scrolling
Housekeeping is obscuring actual purpose of the code

55

We would prefer this – linear code

Certainly less scrolly. And your pattern matching skills may enable you to better
ignore the housekeeping in amongst the good stuff. But there’s something missing

56

But here’s the bottom half of the arrow
So you can’t just bail, you have to release or unadvised or whatever according to how
far you got
You could put each of these “cleanups” before the return statements, but you would
be repeating them – if you return after completing two things, clean up after two
things, if you return after completing three things, clean up after three things, etc. It’s
really hard to write and maintain this code.

This pattern happens outside of COM calls or Windows programming. Any time you
make a change of some kind and are committed to changing it back when you’re
done (for better or worse) then you’re in a great place to let a destructor be the way
you do that cleanup. Of course, it’s not super efficient for all of us to write these little
classes whose destructors call Release() or Unadvise() or whatever it is that needs to
be called, but you know once one is written, using it will make your code neater,
more readable, and probably eliminate some kind of leak, resource leak, handle leak
or whatnot.

Let’s switch to a slightly simpler and slightly less nested example

57

Let’s switch to a much simpler example because that huge one is too big for a slide.
This code is fine, it works. But you have to remember to free the buffers according to
whether you got them or not.

So imagine someone wrote an RAII container for you whose destructor will call free.

58

So this is a classic RAII example. You no longer call free – the destructor of the
imaginary raii_container will do so, either on the two return statements you see here
or at the end when the function is finished. Yay.

59

Hey, what about std::vector? It’s all RAII and stuff right?
Yes, BUT….
It uses new
And new throws when things go bad
And code that is full of manual memory management is probably not exception safe
(notice we had nothing on the previous slides about try/catch etc) so chances are we
would be introducing bugs here.

60

But that doesn’t mean C++ has nothing to offer us. How about we use the
nonthrowing new to make our buffers, and then harness unique_ptr? This will totally
work.

61

If you have reason to prefer malloc over new for reasons other than the throwing,
you can use malloc with unique_ptr, you just have to provide your own deleter as a
second template argument and write that deleter to use free.

So wow cool just look for any memory allocation and hand that to unique_ptr? That
will solve all my problems? Not always. Unique_ptr is great for allocations that have a
single owner. This code (or the previous slide) create the buffers, use them, clean
them up. Perfect. Not all code does that.

62

Let’s go back to that file open dialog example. This code just calls CoCreateInstance
and then Release. But notice that when it passes the pointer, pfd, to
CoCreateInstance it actually passes the address. The address of a unique pointer is
not that same as the address of a raw pointer so just making pfd a unique_ptr is not
going to work.

63

So although I can make a unique_ptr with my own deleter that does the COM release,
using it will mean passing the address of a unique_ptr and that’s not the type
CoCreateInstance expects. And casting won’t help unless the address of the
unique_ptr also happens to be the address of the raw pointer it’s holding inside,
which you cannot know.

No worries, and no need to write all this yourself anyway. You’re hardly the first COM
programmer after all

64

ComPtr is an RAII container that does the release for you when it goes out of scope,
and has an overload of the address-of operator that does what you expect. It’s in the
WRL library. There is also a CComPtr in ATL that is similar.

You don’t need to write your own RAII containers for everything, but you do need to
know a little bit about how these containers work and which one is right for you.

The moral of this section is not “when to use unique_ptr, when to use unique_ptr
with a deleter, when to use ComPtr, when to write your own class” etc. The moral of
this section is that RAII will save your butt. It will save your butt because the beauty
of invisible code makes the real work of your function more obvious, and because
you won’t have leaks if things go wrong partway through. Once you embrace RAII
then you will have the specific task of finding a class that someone has written that
does what you need, and if you’re doing work that lots of people do, and COM is a
great example of that, then you’re likely to find a class that someone else also wrote.
But if you have to write the class yourself, that’s hardly a problem: you have the
cleanup code you need right there at the bottom of the arrow, so this is a relatively
mechanical exercise.

65

Just don’t try to achieve linearity through endless copy and paste of similar cleanup
code

You can only safely bail in the middle if you know the cleanup will happen.

People can read your code and understand what it does and not be surprised.

66

Again just emphasizing that even though most of us were taught RAII in the context
of exceptions, they still provide tremendous value in an exception free world. They
make cleanup code both invisible and guaranteed to happen. Both of those are major
features. After all, encapsulation is still and always a good thing. Detailed inside
knowledge like “this needs to be released” or “you need to call Close on this” should
have been buried in a class all along and that’s what we’re advocating for.

But speaking of exceptions… switch to James

67

Switch to James

NEXT: vector example from previous section

68

Let’s go back to a slide that we had in the previous section…
…ideally, we really should use std::vector for those heap-allocated buffers.
…but we can’t just start using the STL in code that isn’t exception-safe
…that would be a disaster.

But let’s say that we really want to start using exceptions in some part of our library

NEXT: Introducing exceptions intro

69

In many cases it’s not so much that you want to use exceptions, it’s that you want to
use new or you want to use a library class like vector<> that might throw, and that
means that you’re using exceptions whether you actually intended to or not.

NEXT: Basic boundary function

70

An exception boundary function uses things that may throw, but it itself does not
throw.

NEXT: Basic try/catch wrapper

71

NEXT: Translating to actual error codes

72

Too much code here; we’re likely to repeat this code everywhere and to need to
update or expand this code in hundreds of places to take care of a new expected
exception that doesn’t warrant calling terminate.

NEXT: Macro to encapsulate catches

73

OK, yuck, but hands up if you’ve done it? People have.

NEXT: Function to encapsulate catches

74

Lippincott function. Same effect and much cleaner.

NEXT: Final beautiful lambda example

75

This makes the call site nice and clean. You don’t have to use a lambda, the Callable
could be an entire throwing function also.

Unlike the macro, you can debug through this. You can adapt this approach for
anything where you need to run some code in a different context.

76

This is an imperfect example here: Whether the stack is unwound is an
implementation detail
 * In the Visual C++ implementation, it is not, in order to preserve the call stack in
crash dumps

The compiler can optimize away the try/catch in places where it knows the code can’t
throw (but this is a general optimization, not limited to noexcept)

noexcept may offer some performance benefit in callers (EH state needs not be
tracked across the call)

NEXT: SECTION: const

77

Switch to Kate

Protects you from errors of thought
Enables some optimizations
viral

78

Assumption: you’re at this point already. Your code compiles and you’ve marked
member functions and parameters const where you had to in order to get it to
compile. What we’re proposing in this section is that you go beyond that, and that it’s
worth your time and effort to go beyond that.

This will enable you to understand and safely change the legacy code you’re working
on.

79

Adding const and seeing what breaks is actually a useful way to understand legacy
code. Mark everything const that you possibly can, not just that you have to.

Why? Because the compiler is your friend.

80

Skipping overflow check on buffer size

What can we const qualify? First, do we change the parameters? Clearly we’re going
to change the contents of the memory buffer points to, by reading into it, but we
don’t intend to change the pointer, or the size or count.

81

What else? The size, once calculated, isn’t going to change.

82

And the “iterators” (pointers really, but mentally they’re iterators) for first and last
aren’t going to change either

83

So?
First of all, if there is any actual bug that changes some of these things, you’ll get a
compiler error
Code with less moving parts is easier to debug and understand. Here we’re labelling
the parts that don’t move. You’re reducing the surface area of what you have to hold
in your head while you refactor.

We haven’t done anything viral here because the only thing we pass into some other
function is it, and we didn’t mark that const because we increment it ourselves.

By going through, marking things const, making sure it still builds, marking more
things const, making sure it still builds, you’re making sure that your mental picture of
this code is actually correct.

Insert chit chat here about const on the left/right before/after
My heart says “const int” but my fingers type “int const” and yours should too

84

Basically put it everywhere you can, it will make your life easier

85

Basically put it everywhere you can, it will make your life easier

86

Here’s an example: we may have some variable that requires some “complex”
initialization

87

In this not-so-complex case, we could use the conditional operator
(James loves this.)

88

In more complex cases, consider using a lambda expression

89

Making a data member const prevents assignment of objects. If that’s what you want
(immutability) it’s best to express that through the interface of the object. If your
class is for some reason already non copyable this is less of an issue.

Returning a const value ties the hands of code that calls you for no good reason
(pointer or ref is different)

Move semantics and rvalue references are super cool but moving changes an object
so it can’t be const. That means const temporaries will get copied from instead of
moved (with no warning) for a perf hit.

When you return by value there appears to be a copy but modern compilers have
RVO, return value optimization, that saves you the copy with a move or just by eliding
it, however if you declared a const local variable and then return it, you will have to
pay for the copy, same as any other const temporary. So don’t overuse const.

90

Switch to James

91

What does this do? Can you know without knowing what p is and seeing the
definition of ClassType?

92

93

94

95

96

97

98

In addition to matters of correctness, just consider the searching issues trying to find
casts if you use C casts. Just don’t. Tell people who are reading your code what you
think you’re doing, and your code will be better for it.

99

Switch to Kate

The action items are getting harder as we go through the recommendations. There is
no doubt that this may be the hardest work to do, but then again it may have the
biggest benefit, whether that is clearing away hidden bugs, improving performance,
or making it possible to add a capability because you can now understand and
perhaps change a section of your code.

Some code you have the freedom to make bigger changes to. Making these changes
isn’t right for every project, but will make the code easier to read, understand, check,
debug, and reuse. Let me show you.

100

Two hard problems: cache invalidation, naming things, and off by one errors

Fencepost errors

101

Iterator code is better than indexing. For one thing people do weird stuff with indexes
that they don’t do with iterators.

102

Now it’s safer and there’s so much less to get wrong

103

<algorithm> is glorious. Finding the largest value in a collection is not exactly ground
breaking research. Nor is finding the smallest value, sorting, counting, and so on.

104

You don’t need a comment because “sort” and “find” are [not really subtle] clues
about what is going on.

The key to me around using these is the addition of lambdas in C++11. Using a
lambda for the predicate that the _if functions take (and some sort overloads etc)
makes it all readable and usable. If you memorized that you hate these things back in
the days of function pointers and then never thought about them again, it’s time to
take another look.

105

Opened my (and many people’s) eyes to partition and rotate

A lot of problems are solved problems.

106

I built this canoe in 1985. (It is a few months older than James.) Everyone admires it,
it’s beautiful. But a C++ developer once asked me: “did you rip the cedar into strips
yourself?” No, I didn’t. And nor did I grow the tree. You can write a beautiful app with
someone else’s library functionality.

107

Imagine you’re writing a ToDo application. You’ve got some sort of user interface
elements that represent things the user wants to do, and they’re dragging and
dropping them for the priority. So there are tasks 1 through whatever, and someone
grabs task 4 and pulls it up between 1 and 2. You’ve got some sort of vector, and you
need to rearrange the elements of the vector in response to this user interaction
you’ve received about the dragging and the dropping. If you write this yourself, you
might do something like “insert a copy of it after the place it was dragged, shoving
everything else down. Then delete it from where it used to be, pulling everything else
back up.” If it was dragged upwards, “where it used to be” has been pushed down
one, and if it was dragged downwards, “where it was dropped” has been pulled up
one, so most people end up writing this in two halves, one for an upward pull and
one for a downward pull. It’s kind of persnickety work.

I’m not going to show you the hundreds of lines of code to do that by hand with loops
of my own. Instead, I’m going to skip to the punchline and show you rotate and stable
partition.

108

This is actually a job for std::rotate. You probably don’t think so, because pretty much
every example of rotate on the planet looks like this. Move all the elements up one,
or down one. It’s hard to imagine much of a use for that. But in fact, rotate takes an
arbitrary range within a collection and moves it up to some other point within the
collection. If you want to move down, just change your opinion of what you’re
moving.

109

So back to the Todo list, here’s how ONE LINE OF CODE takes care of that drag-and-
drop action by the user:

I’m not going to show you the hundreds of lines of code to do that by hand with loops
of my own. Instead, I’m going to skip to the punchline and show you rotate and stable
partition.
Actually the parameter names are “Start of section of collection you are rotating
(we’re ignoring element one and starting the rotate at 2)”, “element that will be the
new first element in the section” “just past end of section of collection you’re
rotating (we’re ignoring elements 5 and 6 and ending the rotate after 4)”.

110

Now, imagine that the user is allowed to shift-click, or whatever it is on your favourite
OS, and grab a range of tasks. Maybe tasks 4, 5, and 6 are all errands that will be run
together and the user wants to drag them down after task 6, or up before task 2. You
can see how this makes your function a lot more complicated. In fact, I learned about
rotate in a talk by Sean Parent and he had an example of real code from a Google
code review that was doing this for windows a user could drag around, and it was
pages long.

Switch back to code and show the three-item rotate

111

What’s more, whether it’s windows or todo items, you can imagine that a user might
want to control-click or command-click and pick up several disjoint elements and drag
them all together to one place in the collection, a gathering operation, and if it’s
pages of code to move a contiguous range what is it to move a disjoint selection?

To pull certain items out of a collection is to partition the collection, basically into the
selected and unselected items. A stable partition ensures that the items in each part
of the collection stay in the same order they were in before, just like stable sort. In a
real UI the condition that separated our partitions would be whether they were
selected or not. Here I’m going to use whether they are odd or not. The iterator you
get back from stable_partition points to the element after the partition, in this case 2.
I’m going to put all the odd elements before element four. I’m rotating the
partitioned collection from the beginning, making the element after the selected
items (2) the new start of the collection, and the rotation is going from the beginning
to just before element 4, so after all the selected ones the original remaining
elements will carry on from there. I could have done another find or whatever to find
which I wanted to be the new start of the rotated collection.

112

In other words, consider buying the strips of wood and then making a beautiful canoe
from them.

Hand to James

113

Switch to James

a five- to seven-minute example (maybe "demo" style in the IDE) talking about the
rewrite that we did of printf as part of the Visual Studio 14 CRT refactoring. This will
be a brief walkthrough of the old sources to show how horrible they were, then a
walk through the new implementation pointing out places where we've strategically
used modern C++ features (even lambdas and policy based design) to make the code
more maintainable. The nice thing about this "case study" is that we can finish by
addressing one of the biggest concerns that people have about using these C++
features--performance. The new C++ized sprintf is up to 60x faster

114

115

116

void run_test(char const* const name)
{
 char* const source = (char*)malloc(1024 * 1024);
 char* const buffer = (char*)malloc(1024 * 1024);

 for (int i = 0; i != 1024 * 1024; ++i)
 {
 source[i] = '0' + (i % 10);
 }

 source[1024 * 1024 - 1] = '\0';

 auto const start_time = get_time();

 for (int i = 0; i != 16000; ++i)
 {
 sprintf_s(buffer, 1024 * 1024, "%s", source);
 }

117

 auto const end_time = get_time();

 printf("elapsed time (%s): %f\n", name, ((double)end_time - start_time) /
get_frequency());
}

117

void run_test(char const* const name)
{
 char* const source = (char*)malloc(1024 * 1024);
 char* const buffer = (char*)malloc(1024 * 1024);

 for (int i = 0; i != 1024 * 1024; ++i)
 {
 source[i] = '0' + (i % 10);
 }

 source[1024 * 1024 - 1] = '\0';

 auto const start_time = get_time();

 for (int i = 0; i != 16000; ++i)
 {
 sprintf_s(buffer, 1024 * 1024, "%s", source);
 }

118

 auto const end_time = get_time();

 printf("elapsed time (%s): %f\n", name, ((double)end_time - start_time) /
get_frequency());
}

118

void run_test(char const* const name)
{
 char* const source = (char*)malloc(1024 * 1024);
 char* const buffer = (char*)malloc(1024 * 1024);

 for (int i = 0; i != 1024 * 1024; ++i)
 {
 source[i] = '0' + (i % 10);
 }

 source[1024 * 1024 - 1] = '\0';

 auto const start_time = get_time();

 for (int i = 0; i != 16000; ++i)
 {
 sprintf_s(buffer, 1024 * 1024, "%s", source);
 }

119

 auto const end_time = get_time();

 printf("elapsed time (%s): %f\n", name, ((double)end_time - start_time) /
get_frequency());
}

119

120

What’s a FILE* doing here
That _putc_nolock expands into an ugly expression
The resulting write_char (after that expansion) was “too big” for the compiler to
naturally inline

121

Really, what we want is to do this…
Why not just call strncpy?
We could, but we have to handle field widths.

122

123

void run_test(char const* const name)
{
 char* const source = (char*)malloc(1024 * 1024);
 char* const buffer = (char*)malloc(1024 * 1024);

 for (int i = 0; i != 1024 * 1024; ++i)
 {
 source[i] = '0' + (i % 10);
 }

 source[1024 * 1024 - 1] = '\0';

 auto const start_time = get_time();

 for (int i = 0; i != 16000; ++i)
 {
 sprintf_s(buffer, 1024 * 1024, "%s", source);
 }

124

 auto const end_time = get_time();

 printf("elapsed time (%s): %f\n", name, ((double)end_time - start_time) /
get_frequency());
}

124

125

This is a summary. But all of it applies to one problem we all face when we meet
legacy code

126

Also mention arrow code

In my experience if you meet a 1000 line function whose structure is opaque to you
then you need to figure out what it does before you start to pull it apart.

One reason to write a wall of code is you have a type in your head that is not in your
code. You have a bunch of local variables that together constitute some thing. And
you have big blocks of code that do stuff to those locals as a way to work on that
thing. So it does something to employee name, and then to employee phone number,
and then to employee email address, and so on. This code is showing you where
encapsulation is dying to emerge.

127

128

